
ECE 478

Portland State University

Fuzzy Logic for Robo-Magellan

Chris Clark
Bradon Kanyid
Tyler Tricker

December 10, 2012

Fuzzy Logic for Robo-Magellan C. Clark B. Kanyid T. Tricker

ECE 478 1

Fuzzy Logic for Robo-Magellan C. Clark B. Kanyid T. Tricker

1 Overview
For homework 3, we implemented a fuzzy obstacle avoidance ruleset for our Robo-Magellan robot.
The logic was implemented in C++ using three classes: a fuzzy number class, a fuzzy function
class, and a fuzzy set class. The rules were derived from a paper written at Tsinghua University
in 1994 entitled "Fuzzy Logic Based Robot Navigation In Uncertain Environments By Multisensor
Integration" written by Wei Li1. Currently the robot doesn’t have a goal or target; it is simply
attempting to travel and avoid obstacles.

2 Fuzzy Logic Implementation

2.1 Fuzzy_t Class
The fuzzy number class encapsulates a floating point number that is in the domain of [0.0, 1.0], where
1.0 is completely true and 0.0 is completely false. This class in particular defines the standard set
of fuzzy operators.

/∗∗
∗ Fuzzy Number Implementation
∗/

class Fuzzy_t
{
public :

Fuzzy_t (float value)
{

this−>value = value ;
}

Fuzzy_t operator | (const Fuzzy_t& right) const
{

return std : : max<float>(this−>value , right . value) ;
}

Fuzzy_t operator&(const Fuzzy_t& right) const
{

return std : : min<float>(this−>value , right . value) ;
}

Fuzzy_t operator^(const Fuzzy_t& right) const
{

return (∗ this & ~right) | (~∗this & right) ;
}

Fuzzy_t operator~() const
{
return 1 .0 f − value ;
}

bool defuzzy () const
{

return (value > 0 .5) ? true : false ;
}

1http://www.cs.csubak.edu/ wli/Wei_Li_Pub/IEEE_MFI94_Li.pdf

ECE 478 2

Fuzzy Logic for Robo-Magellan C. Clark B. Kanyid T. Tricker

Close Near Far

15" 30"

1.0

0.0

Fuzzy Set Memberships

45"

Figure 1: Fuzzy Set Visualization

float getvalue ()
{

return value ;
}

private :
float value ;

} ;

2.2 Fuzzy Membership Functions
The membership function implemented are standard triangular-shaped membership functions de-
fined by their minimum and maximum range, (min, max). Everything outside these ranges is 0.0
and the midway point between the minimum and maximum is 1.0.

/∗∗∗
∗ Fuzzy Membership Function . This i s a t r i angu l a t ed func t i on with a
∗ 1 .0 output d i r e c t l y inbetween the min and max .
∗/

class FuzzyMember
{
public :

FuzzyMember (const float& min , const float& max)
: begin (min) ,
end (max)

{}
FuzzyMember () ; // d e f au l t con s t ruc to r

virtual ~FuzzyMember (){}

/∗∗∗
∗ This i s the t r i a n gu l a t i o n func t i on to determine the membership o f a va r i ab l e .
∗ Does not work f o r i n f i n i t e va lue s and nans .
∗/

virtual Fuzzy_t membership (const float& value)
{
if ((value < begin) | (value > end))

{
return 0 .0 f ;

}

ECE 478 3

Fuzzy Logic for Robo-Magellan C. Clark B. Kanyid T. Tricker

else
{

float halfspan = (end − begin) / 2 .0 f ;
float dist = halfspan + begin − value ;
dist = fabs (dist) ;
return 1 .0 f − dist / halfspan ;

}
}

private :
friend class FuzzySet ;

// Pr ivate s t a t e
float begin ;
float end ;

} ;

2.3 Fuzzy Set
The fuzzy set class was derived from the C++ STL Vector container class. This allws the set to
be extended, changed and manipulated using standard c++ algorithms and syntax. Currently, set
operators are not implemented but may be in the future with the use of STL’s Map class. The
benefits of using the map class is that fuzzy set operators can be done at runtime to allow for fuzzy
logic synthesis.

/∗∗∗
∗ Fuzzy Set Impletementat ion
∗ Use an enum and pushback to i n i t i a l i z e the membership s e t
∗/

class FuzzySet : public std : : vector<FuzzyMember>
{
public :

FuzzySet () : vector<FuzzyMember >:: vector ()
{

input = NULL ;
}
virtual ~FuzzySet ()
{

input = NULL ;
}

// Automatica l ly r e tu rn s the membership o f the reques ted element
Fuzzy_t operator [] (size_type n)
{
FuzzyMember& member =

this−>vector<FuzzyMember >:: operator [] (n) ;
if (input)
{

if ((n == 0) && (∗ input < member . begin))
{

return 1 .0 f ;
}
else if (n == (this−>size () − 1) && (∗ input > member . end))
{

return 1 .0 f ;

ECE 478 4

Fuzzy Logic for Robo-Magellan C. Clark B. Kanyid T. Tricker

}

return member . membership (∗ input) ;
}
else return 0 .0 f ;
}

void set_input (float∗ input_variable)
{

input = input_variable ;
}

private :
float∗ input ;

} ;

2.4 Writing Rules
Because the fuzzy set class is a derived class from C++’s STL Vector class, membership functions
can be indexed like integers. Creating an enum variable to index into the fuzzy set makes code
more readable and avoids the overhead of string comparisons.

enum kettle_members
{

Cold ,
Warm ,
Hot ,
Max

} ;

void example (void)
{

FuzzySet kettle ;
float temp ;
kettle . setinput(&temp) ;
kettle . resize (Max − 1) ;
//FuzzySet [0] i s always [− i n f , max)
kettle [Cold] = Fuzzy_Member (0 . 0 f , 30 .0 f) ;
sonar1 [Warm] = Fuzzy_Member (15 . 0 f , 45 .0 f) ;
sonar1 [Hot] = Fuzzy_Member (30 . 0 f , 60 .0 f) ;

//Fuzzy Rules
if ((kettle [Hot]) . defuzzy ())
{

// turn k e t t l e o f f
setHeat (0 . 0 f) ;

}
else if ((kettle [Warm]) . defuzzy ())
{

// turn heat on low
setHeat (0 . 5 f) ;

}
else if ((kettle [Cold]) . defuzzy ())
{

// turn heat on high

ECE 478 5

Fuzzy Logic for Robo-Magellan C. Clark B. Kanyid T. Tricker

setHeat (1 . 0 f) ;
}

// a l t e r n a t i v e method
// 0 .0 f −> heat o f f 1 . 0 f −> heat on f u l l

setHeat (~kettle [Hot] . getvalue ()) ;

}

3 Object Avoidance with Fuzzy Logic
The 2012 Portland State Magellan Bot has access to four long range sonar sensors and one GPS
unit to attempt to navigate a course. We integrated the long range sonar to demonstrate that
obstacle avoidance can be done using only four fuzzy rules.

3.1 Fuzzy Sets

sonar [VERYNEAR] = FuzzyMember (00 . 0 f , 30 .0 f) ;
sonar [NEAR] = FuzzyMember (15 . 0 f , 45 .0 f) ;
sonar [FAR] = FuzzyMember (30 . 0 f , 60 .0 f) ;

3.2 Demo Rule Set and Motor Controller
Our simple implementation of four rules allow the robot to avoid most obstacles. Each rule checks
the distance on a few of the sonar sensors, determines which direction it should move to avoid the
object and then updates the motor controller appropriately. The motor controller uses a degree-
based system to control the left and right motors. sin(direction · speed + 45◦) controls the left
motor’s speed while sin(45◦ − direction · speed) controls the right. This allows a single variable to
control the motors where: 0 is straight forward, 90 is only right wheels, 180 is spin around to the
right (left forward, right backwards), 360 is back up.

if ((frontLeft [VERYNEAR] | frontRight [VERYNEAR]) . defuzzy ())
{

int direction = (s2 . distance − s3 . distance) < 0 ? 1 : −1;
motor−>setMovement (direction ∗ 180 , 0 . 5) ;
Thread : : wait (5 0 0) ; // turn most o f the way around

}
else if (((frontLeft [NEAR] | frontRight [NEAR]) . defuzzy ()))
{

int direction = (s2 . distance − s3 . distance) < 0 ? 1 : −1;
motor−>setMovement (direction ∗ 60 , 0 . 5) ;

}
else if (((~ sideLeft [FAR] | ~sideRight [FAR]) . defuzzy ()))
{

int direction = (s1 . distance − s4 . distance) < 0 ? 1 : −1;
motor−>setMovement (direction ∗ 60 , 0 . 5) ;

}
else if (((frontLeft [FAR] | frontRight [FAR]) . defuzzy ()))
{

motor−>setMovement (0 , 0 . 5) ;
}

ECE 478 6

Fuzzy Logic for Robo-Magellan C. Clark B. Kanyid T. Tricker

4 Conclusion
The fuzzy logic rules implemented currently are sufficient for avoiding obstacles, but do not lead
the robot towards any goal or waypoint as described in the Robo-Magellan competition.

Integrating the GPS sensor information for heading should modify the rule set to be similar to
those rules found in Wei Li’s paper.

We also will need to use the GPS sensor to determine when to exchange rule sets depenending
on the mode that the robot is in. When far from a waypoint, the robot should use the described
rule set for obstacle avoidance, augmented with the GPS information for general heading. When
close to an obstacle, we will need to switch the rule set to an obstacle-seeking mode, where it will
seek out the marker at the waypoint and touch it.

In the following quarter, for this seeking mode, it may make sense to use a simple vision system,
as the waypoint marker is always a road cone, and therefore, we should be able to look for the color
orange. This could again be implemented in our fuzzy rule set, giving a single integrated sensor
network to base our rules from.

ECE 478 7

	Overview
	Fuzzy Logic Implementation
	Fuzzy_t Class
	Fuzzy Membership Functions
	Fuzzy Set
	Writing Rules

	Object Avoidance with Fuzzy Logic
	Fuzzy Sets
	Demo Rule Set and Motor Controller

	Conclusion

